Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Biomedical Engineering
Article . 1989 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FES and spasticity

Authors: Stefanovska, A.; Vodovnik, L.; Gros, N.; Rebersek, S.; Acimovic-Janezic, R.;

FES and spasticity

Abstract

A model of hemiplegic spasticity based on electromyographical and biomechanical parameters measured during passive muscle stretching is presented. Two components of spasticity can be distinguished--phasic and tonic. This classification depends on the pattern of stretch reflex activity which can be either phasic or tonic as well as on the muscle stretch/tension characteristic. Stretch reflex, as a control loop, is in phasic spasticity characterized by increased sensitivity to velocity of stretching. In tonic spasticity, sensitivity to length of stretching is increased. After the injury, phasic spasticity appears first and invokes monosynaptic reflex pathways. The intensity of tonic spasticity increases with the duration of disability and hence causes changes in muscle fiber biomechanical properties. The model mentioned above has been used to evaluate the effects of FES on spasticity. Hemiplegic patients with implanted peroneal nerve stimulator for gait correction were followed up for one year starting a week before implantation. Long-term use of FES resulted in decrease of tonic spasticity in both ankle joint antagonistic muscle groups. In stimulated tibialis anterior muscle, the phasic type of spasticity increased. To obtain the correlation between changes in spasticity and functional abilities of patients, the maximal voluntary isometric contraction of both muscle groups was also measured. An improvement in voluntary strength was also observed. This can be taken as additional evidence that tonic spasticity is of greater physiological and clinical significance than phasic spasticity. It may be concluded that use of FES can decrease tonic spasticity and, if applied early after the injury, can prevent the appearance of tonic spasticity.

Related Organizations
Keywords

Adult, Electromyography, Muscle Spasticity, Isometric Contraction, 616, 610, Humans, Electric Stimulation Therapy, Hemiplegia, Middle Aged, Electrodes, Implanted

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!