<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper is concerned with the numerical solution of multi‐dimensional convection dominated convection‐diffusion problems. These problems are characterized by a large parameter, K, multiplying the convection terms. The goal of this work is the development and analysis of effective preconditioners for iteratively solving the large system of linear equations arising from various finite element and finite difference discretizations with grid size h. When centered finite difference schemes and standard Galerkin finite element methods are used, h must be related to K by the stability constraint, Kh ≤ C0, where the constant C0 is sufficiently small. A class of preconditioners is developed that significantly reduces the condition number for large K and small h. Furthermore, these preconditioners are inexpensive to implement and well suited for parallel computation. It is shown that under suitable assumptions, the number of iterations remains bounded as h ↓0 with K fixed and, at worst, grows slowly as K ↓ ∞. Numerical results are presented illustrating the theory. It is also shown how to apply the theoretical results to more general convection‐diffusion problems and alternative discretizations (including streamline diffusion methods) that remain stable as Kh ↓ ∞.
Diffusion and convection, Finite element methods applied to problems in fluid mechanics
Diffusion and convection, Finite element methods applied to problems in fluid mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |