Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aircraft Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Aircraft Engineering and Aerospace Technology
Article . 1960 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 1 versions
addClaim

Design for Minimum Weight

Considerations Based on the Long Wave Instability of Stiffened Plates in Compression
Authors: S. Yusuff;

Design for Minimum Weight

Abstract

A new approach to the problem of minimum‐weight design of stiffened compression panels is presented. It is predominantly based on the plate instability mode in which the sheet and stiffeners, having been stressed to the same degree, simultaneously buckle over a long wavelength with the length of a buckle equal to the pin‐ended length of a panel. Charts to determine the buckling stresses of the modes required for the minimum‐weight design are given. Formulae and charts are presented to compute the effective moment of inertia of a stiffener, a most important quantity, over a wide range of panel proportions, for Z‐section and integrally machined unflanged stiffeners. The principles of minimum‐weight design are discussed and illustrated by the lightest Z‐stiffener panels selected from extensive test data. Comparison of the theoretical stresses of the optimum panels and many other panels of different proportions with those obtained by tests shows good agreement. The principle of dimensional similarity, which is implicit in the buckling mode referred to above, eliminates the effects of size. Results obtained either from theory or tests can therefore be applied to different size panels of like proportions.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!