<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Heterosis refers to the phenomenon that progeny of diverse varieties of a species or crosses between species exhibit greater biomass, speed of development, and fertility than both parents. Various models have been posited to explain heterosis, including dominance, overdominance, and pseudo-overdominance. In this Perspective, we consider that it might be useful to the field to abandon these terms that by their nature constrain data interpretation and instead attempt a progression to a quantitative genetic framework involving interactions in hierarchical networks. While we do not provide a comprehensive model to explain the phenomenology of heterosis, we provide the details of what needs to be explained and a direction of pursuit that we feel should be fruitful.
Hybrid Vigor, Gene Expression, [SDV.GEN] Life Sciences [q-bio]/Genetics, Biomass, Models, Biological
Hybrid Vigor, Gene Expression, [SDV.GEN] Life Sciences [q-bio]/Genetics, Biomass, Models, Biological
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 437 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |