
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Abstract Activation tagging using T-DNA vectors that contain multimerized transcriptional enhancers from the cauliflower mosaic virus (CaMV) 35S gene has been applied to Arabidopsis plants. New activation-tagging vectors that confer resistance to the antibiotic kanamycin or the herbicide glufosinate have been used to generate several tens of thousands of transformed plants. From these, over 30 dominant mutants with various phenotypes have been isolated. Analysis of a subset of mutants has shown that overexpressed genes are almost always found immediately adjacent to the inserted CaMV 35S enhancers, at distances ranging from 380 bp to 3.6 kb. In at least one case, the CaMV 35S enhancers led primarily to an enhancement of the endogenous expression pattern rather than to constitutive ectopic expression, suggesting that the CaMV 35S enhancers used here act differently than the complete CaMV 35S promoter. This has important implications for the spectrum of genes that will be discovered by this method.
DNA, Bacterial, Base Sequence, Genetic Vectors, Arabidopsis, Enhancer Elements, Genetic, Phenotype, Transformation, Genetic, Caulimovirus, Gene Expression Regulation, Plant, Promoter Regions, Genetic, DNA Primers
DNA, Bacterial, Base Sequence, Genetic Vectors, Arabidopsis, Enhancer Elements, Genetic, Phenotype, Transformation, Genetic, Caulimovirus, Gene Expression Regulation, Plant, Promoter Regions, Genetic, DNA Primers
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 861 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
