
Abstract A full-length cDNA encoding phenylalanine ammonia-lyase (PAL) from Zea mays L. was isolated and the coding region was expressed in Escherichia coli as a C-terminal fusion to glutathione S-transferase. After purification by glutathione-Sepharose chromatography, the glutathione S-transferase moiety was cleaved off and the resulting PAL enzyme analyzed. In contrast to PAL from dicots, this maize PAL isozyme catalyzed the deamination of both L-phenylalanine (PAL activity) and L-tyrosine (tyrosine ammonialyase activity). These results provide unequivocal proof that PAL and tyrosine ammonia-lyase activities reside in the same polypeptide. In spite of large differences in the Michaelis constant and turnover number of the two activities, their catalytic efficiencies are very similar. Also, both activities have the same pH and temperature optima. These results imply that maize can produce p-coumaric acid from both phenylalanine and tyrosine.
Ammonia-Lyases, Base Sequence, Molecular Sequence Data, Escherichia coli, Amino Acid Sequence, Zea mays, Phenylalanine Ammonia-Lyase
Ammonia-Lyases, Base Sequence, Molecular Sequence Data, Escherichia coli, Amino Acid Sequence, Zea mays, Phenylalanine Ammonia-Lyase
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 298 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
