
After cold acclimation, winter rye (Secale cereale L.) is able to withstand the formation of extracellular ice at freezing temperatures. We now show, for the first time, that cold-acclimated winter rye plants contain endogenously produced antifreeze protein. The protein was extracted from the apoplast of winter rye leaves, where ice forms during freezing. After partial purification, the protein was identified as antifreeze protein because it modified the normal growth pattern of ice crystals and depressed the freezing temperature of water noncolligatively.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 242 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
