
Dielectric and antiferroelectric materials are particularly promising for high-power energy-storage applications. However, relatively low energy density greatly hinders their usage in storage technologies. Here, we report first-principles-based calculations predicting that epitaxial and initially non-polar AlN/ScN superlattices can achieve an ultrahigh energy density of up to 200 J/cm$^{\textrm{3}}$, accompanied by an ideal efficiency of 100%. We also show that high energy density requires the system being neither too close nor too far from a ferroelectric phase transition under zero electric field. A phenomenological model is further proposed to rationalize such striking features.
6 pages, 2 figures
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
