
Spinfoam theories are hoped to provide the dynamics of non-perturbative loop quantum gravity. But a number of their features remain elusive. The best studied one -the euclidean Barrett-Crane model- does not have the boundary state space needed for this, and there are recent indications that, consequently, it may fail to yield the correct low-energy $n$-point functions. These difficulties can be traced to the SO(4) -> SU(2) gauge fixing and the way certain second class constraints are imposed, arguably incorrectly, strongly. We present an alternative model, that can be derived as a bona fide quantization of a Regge discretization of euclidean general relativity, and where the constraints are imposed weakly. Its state space is a natural subspace of the SO(4) spin-network space and matches the SO(3) hamiltonian spin network space. The model provides a long sought SO(4)-covariant vertex amplitude for loop quantum gravity.
6pages
[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc], FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantization of the gravitational field, General Relativity and Quantum Cosmology
[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc], FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantization of the gravitational field, General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 204 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
