Downloads provided by UsageCounts
Precise control over massive mechanical objects is highly desirable for testing fundamental physics and for sensing applications. A very promising approach is cavity optomechanics, where a mechanical oscillator is coupled to a cavity. Usually, such mechanical oscillators are in highly excited thermal states and require cooling to the mechanical ground state for quantum applications, which is often accomplished by utilising optomechanical backaction. However, this is not possible for increasingly massive oscillators, as due to their low frequencies conventional cooling methods are less effective. Here, we demonstrate a novel cooling scheme by using an intrinsically nonlinear cavity together with a low frequency mechanical oscillator. We demonstrate outperforming an identical, but linear, system by more than one order of magnitude. While currently limited by flux noise, theory predicts that with this approach the fundamental cooling limit of a linear system can not only be reached, but also outperformed. These results open a new avenue for efficient optomechanical cooling by exploiting a nonlinear cavity.
Additional funding received by the Canada First Research Excellence Fund and by the Deutsche Forschungsgemeinschaft through the Emmy Noether program (Grant No. ME 4863/1-1) and the projects CRC 910 and CRC 183.
OSCILLATOR, Quantum Physics, Physics, ddc:530, FOS: Physical sciences, 530, OUTPUT, GROUND-STATE, info:eu-repo/classification/ddc/530, Quantum Physics (quant-ph), QUANTUM, SYSTEM
OSCILLATOR, Quantum Physics, Physics, ddc:530, FOS: Physical sciences, 530, OUTPUT, GROUND-STATE, info:eu-repo/classification/ddc/530, Quantum Physics (quant-ph), QUANTUM, SYSTEM
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 3 | |
| downloads | 2 |

Views provided by UsageCounts
Downloads provided by UsageCounts