Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.48550/arxiv...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Sygma
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review Letters
Article . 2022 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Physical Review Letters
Article . 2022 . Peer-reviewed
versions View all 8 versions
addClaim

Deep Learning the Functional Renormalization Group

Authors: Domenico Di Sante; Matija Medvidović; Alessandro Toschi; Giorgio Sangiovanni; Cesare Franchini; Anirvan M. Sengupta; Andrew J. Millis;

Deep Learning the Functional Renormalization Group

Abstract

We perform a data-driven dimensionality reduction of the scale-dependent 4-point vertex function characterizing the functional Renormalization Group (fRG) flow for the widely studied two-dimensional $t - t'$ Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a Neural Ordinary Differential Equation solver in a low-dimensional latent space efficiently learns the fRG dynamics that delineates the various magnetic and $d$-wave superconducting regimes of the Hubbard model. We further present a Dynamic Mode Decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the fRG dynamics. Our work demonstrates the possibility of using artificial intelligence to extract compact representations of the 4-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.

6 pages, 5 figures

Countries
Italy, Austria
Keywords

Condensed Matter - Strongly Correlated Electrons, 103015 Kondensierte Materie, 103015 Condensed matter, Strongly Correlated Electrons (cond-mat.str-el), 102019 Machine Learning, FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Machine Learning, Functional Renormalization Group, 102019 Machine learning, Condensed Matter - Disordered Systems and Neural Networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green