Downloads provided by UsageCounts
We present a rigorous approach, based on the concept of continuous thermomajorisation, to algorithmically characterise the full set of energy occupations of a quantum system accessible from a given initial state through weak interactions with a heat bath. The algorithm can be deployed to solve complex optimization problems in out-of-equilibrium setups and it returns explicit elementary control sequences realizing optimal transformations. We illustrate this by finding optimal protocols in the context of cooling, work extraction and catalysis. The same tools also allow one to quantitatively assess the role played by memory effects in the performance of thermodynamic protocols. We obtained exhaustive solutions on a laptop machine for systems with dimension $d\leq 7$, but with heuristic methods one could access much higher $d$.
9 pages, 4 figures. Accompanying paper of arXiv:2111.12130. Published version
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 4 | |
| downloads | 32 |

Views provided by UsageCounts
Downloads provided by UsageCounts