Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Flui...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review Fluids
Article . 2021 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

Erythrocyte-erythrocyte aggregation dynamics under shear flow

Authors: Mehdi Abbasi; Alexander Farutin; Hamid Ez-Zahraouy; Abdelilah Benyoussef; Chaouqi Misbah;

Erythrocyte-erythrocyte aggregation dynamics under shear flow

Abstract

Red blood cells (RBCs) -- erythrocytes -- suspended in plasma tend to aggregate and form rouleaux. During aggregation the first stage consists in the formation of RBC doublets [Blood cells, molecules, and diseases 25, 339 (1999)]. While aggregates are normally dissociated by moderate flow stresses, under some pathological conditions the aggregation becomes irreversible, which leads to high blood viscosity and vessel occlusion. We perform here two-dimensional simulations to study the doublet dynamics under shear flow in different conditions and its impact on rheology. We sum up our results on the dynamics of doublet in a rich phase diagram in the parameter space (flow strength, adhesion energy) showing four different types of doublet configurations and dynamics. We find that membrane tank-treading plays an important role in doublet disaggregation, in agreement with experiments on RBCs. A remarkable feature found here is that when a single cell performs tumbling (by increasing vesicle internal viscosity) the doublet formed due to adhesion (even very weak) remains stable even under a very strong shear rate. It is seen in this regime that an increase of shear rate induces an adaptation of the doublet conformation allowing the aggregate to resist cell-cell detachment. We show that the normalized effective viscosity of doublet suspension increases significantly with the adhesion energy, a fact which should affect blood perfusion in microcirculation.

14pages

Country
France
Keywords

[PHYS.PHYS]Physics [physics]/Physics [physics], Biological Physics (physics.bio-ph), Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Biological Physics, Physics - Fluid Dynamics, Computational Physics (physics.comp-ph), Physics - Computational Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green
bronze