
The low-energy physics of (quasi)degenerate one-dimensional systems is typically understood as the particle-like dynamics of kinks between stable, ordered structures. Such dynamics, we show, becomes highly non-trivial when the ground states are topologically constrained: a dynamics of the domains rather than on the domains which the kinks separate. Motivated by recently reported observations of charged polymers physisorbed on nanotubes, we study kinks between helical structures of a string wrapping around a cylinder. While their motion cannot be disentangled from domain dynamics, and energy and momentum is not concentrated in the solitons, the dynamics of the domains can be folded back into a one-particle picture.
5 pages 4 figures. Supplementary materials (animation): S1.mov, S2.mov, S3.mov
Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter
Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
