Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Earrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review E
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review E
Article . 2014 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Physical Review E
Article . 2014
Data sources: u:cris
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Faster identification of optimal contraction sequences for tensor networks

Authors: Pfeifer, Robert NC; Haegeman, Jutho; Verstraete, Frank;

Faster identification of optimal contraction sequences for tensor networks

Abstract

The efficient evaluation of tensor expressions involving sums over multiple indices is of significant importance to many fields of research, including quantum many-body physics, loop quantum gravity, and quantum chemistry. The computational cost of evaluating an expression may depend strongly upon the order in which the index sums are evaluated, and determination of the operation-minimising contraction sequence for a single tensor network (single term, in quantum chemistry) is known to be NP-hard. The current preferred solution is an exhaustive search, using either an iterative depth-first approach with pruning or dynamic programming and memoisation, but these approaches are impractical for many of the larger tensor network Ansaetze encountered in quantum many-body physics. We present a modified search algorithm with enhanced pruning which exhibits a performance increase of several orders of magnitude while still guaranteeing identification of an optimal operation-minimising contraction sequence for a single tensor network. A reference implementation for MATLAB, compatible with the ncon() and multienv() network contractors of arXiv:1402.0939 and arXiv:1310.8023 respectively, is supplied.

25 pages, 12 figs, 2 tables, includes reference implementation of algorithm, v2.01. Update corrects the display of contraction sequences involving single-tensor traces (i.e. where an index in the input appears twice on the same tensor)

Countries
Austria, Belgium
Keywords

Time Factors, 103025 Quantenmechanik, CHAIN PRODUCTS, MODELS, FOS: Physical sciences, ENGINE, COMPUTATION, ELECTRONIC-STRUCTURE CALCULATIONS, Condensed Matter - Strongly Correlated Electrons, MATRIX RENORMALIZATION-GROUP, CAYLEY TREES, BODY PERTURBATION THEORIES, Quantum Physics, Strongly Correlated Electrons (cond-mat.str-el), COUPLED-CLUSTER, 103036 Theoretische Physik, ANTIFERROMAGNET, Models, Theoretical, Computational Physics (physics.comp-ph), 103036 Theoretical physics, Physics and Astronomy, 103025 Quantum mechanics, Quantum Theory, Quantum Physics (quant-ph), Physics - Computational Physics, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Green
bronze