Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physical Review Earrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review E
Article . 2014 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamical systems theory for the Gardner equation

Authors: Aparna, Saha; B, Talukdar; Supriya, Chatterjee;

Dynamical systems theory for the Gardner equation

Abstract

The Gardner equation u(t) + auu(x) + bu(2)u(x)+μu(xxx) = 0 is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation when the effects of higher-order nonlinearity become significant. Using the so-called traveling wave ansatz u(x,t) = φ(ξ), ξ = x-vt (where v is the velocity of the wave) we convert the (1+1)-dimensional partial differential equation to a second-order ordinary differential equation in ϕ with an arbitrary constant and treat the latter equation by the methods of the dynamical systems theory. With some special attention on the equilibrium points of the equation, we derive an analytical constraint for admissible values of the parameters a, b, and μ. From the Hamiltonian form of the system we confirm that, in addition to the usual bright soliton solution, the equation can be used to generate three different varieties of internal waves of which one is a dark soliton recently observed in water [A. Chabchoub et al., Phys. Rev. Lett. 110, 124101 (2013)].

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!