<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 19792091
handle: 2115/39348
We study a finite-time Carnot cycle of a weakly interacting gas which we can regard as a nearly ideal gas in the limit of $T_\mathrm{h}-T_\mathrm{c}\to 0$ where $T_\mathrm{h}$ and $T_\mathrm{c}$ are the temperatures of the hot and cold heat reservoirs, respectively. In this limit, we can assume that the cycle is working in the linear-response regime and can calculate the Onsager coefficients of this cycle analytically using the elementary molecular kinetic theory. We reveal that these Onsager coefficients satisfy the so-called tight-coupling condition and this fact explains why the efficiency at the maximal power $��_\mathrm{max}$ of this cycle can attain the Curzon-Ahlborn efficiency from the viewpoint of the linear-response theory.
heat engines, thermodynamics, Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, 426, Carnot cycle, Condensed Matter - Statistical Mechanics
heat engines, thermodynamics, Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, 426, Carnot cycle, Condensed Matter - Statistical Mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 97 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |