
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 14995562
A model is presented where the level-population densities in quasi-steady-state hot dense plasmas are described by means of large nonrelativistic superconfigurations (SC's), whose configuration populations follow a decreasing-exponential law versus energy (Boltzmann like) for a temperature depending on the SC. Two systems of linear equations are obtained. The first one yields the average-state population densities of the SC's. Using these results, the second system yields the SC temperatures. In this model, a very large number of atomic levels is accounted for in a simple way, thus yielding the configuration populations and, hence, the ionic distribution and average charge. It also yields accurate simulations of the spectra, which are of the essence for emissivity and absorption calculations. It opens a way to time-dependent calculations.
Kinetics, Models, Statistical, Time Factors, Temperature, Thermodynamics
Kinetics, Models, Statistical, Time Factors, Temperature, Thermodynamics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
