
Iterated functions system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum iterated functions system (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting a QIFS consists of completely positive maps acting in the space of density operators. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
12 pages, 1 figure included
Quantum Physics, FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
