Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.aps.org...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.aps.org/accepted/...
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2019 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantum mechanics and data assimilation

Authors: Dimitrios Giannakis;

Quantum mechanics and data assimilation

Abstract

A framework for data assimilation combining aspects of operator-theoretic ergodic theory and quantum mechanics is developed. This framework adapts the Dirac--von Neumann formalism of quantum dynamics and measurement to perform sequential data assimilation (filtering) of a partially observed, measure-preserving dynamical system, using the Koopman operator on the $L^2$ space associated with the invariant measure as an analog of the Heisenberg evolution operator in quantum mechanics. In addition, the state of the data assimilation system is represented by a trace-class operator analogous to the density operator in quantum mechanics, and the assimilated observables by self-adjoint multiplication operators. An averaging approach is also introduced, rendering the spectrum of the assimilated observables discrete, and thus amenable to numerical approximation. We present a data-driven formulation of the quantum mechanical data assimilation approach, utilizing kernel methods from machine learning and delay-coordinate maps of dynamical systems to represent the evolution and measurement operators via matrices in a data-driven basis. The data-driven formulation is structurally similar to its infinite-dimensional counterpart, and shown to converge in a limit of large data under mild assumptions. Applications to periodic oscillators and the Lorenz 63 system demonstrate that the framework is able to naturally handle highly non-Gaussian statistics, complex state space geometries, and chaotic dynamics.

20 pages, 6 figures

Keywords

Physics - Data Analysis, Statistics and Probability, FOS: Mathematics, FOS: Physical sciences, Mathematical Physics (math-ph), Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Mathematical Physics, Data Analysis, Statistics and Probability (physics.data-an)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Green
hybrid