
Fractional Brownian motion is a widely used stochastic process that is particularly suited to model anomalous diffusion. We focus on capturing the mean and variance of fractional Brownian motion reflected at level 0. As explicit expressions or numerical techniques are not available, we base our analysis on Monte Carlo simulation. Our main findings concern closed-form approximations of the mean and variance, with a near-perfect fit.
530, 510
530, 510
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
