Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2018 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dark energy in the swampland

Authors: Robert H. Brandenberger; Lavinia Heisenberg; Alexandre Refregier; Matthias Bartelmann;

Dark energy in the swampland

Abstract

In this Letter, we study the implications of string Swampland criteria for dark energy in view of ongoing and future cosmological observations. If string theory should be the ultimate quantum gravity theory, there is evidence that exact de Sitter solutions with a positive cosmological constant cannot describe the fate of the late-time universe. Even though cosmological models with dark energy given by a scalar field $��$ evolving in time are not in direct tension with string theory, they have to satisfy the Swampland criteria $|����|c\sim\mathcal{O}(1)$, where $V$ is the scalar field potential. In view of the restrictive implications that the Swampland criteria have on dark energy, we investigate the accuracy needed for future observations to tightly constrain standard dark-energy models. We find that current 3-$��$ constraints with $c \lesssim 1.35$ are still well in agreement with the string Swampland criteria. However, Stage-4 surveys such as Euclid, LSST and DESI, tightly constraining the equation of state $w(z)$, will start putting surviving quintessence models into tensions with the string Swampland criteria by demanding $c<0.4$. We further investigate whether any idealised futuristic survey will ever be able to give a decisive answer to the question whether the cosmological constant would be preferred over a time-evolving dark-energy model within the Swampland criteria. Hypothetical surveys with a reduction in the uncertainties by a factor of $\sim20$ compared to Euclid would be necessary to reveal strong tension between quintessence models obeying the string Swampland criteria and observations by pushing the allowed values down to $c<0.1$. In view of such perspectives, there will be fundamental observational limitations with future surveys.

5 pages, 3 figures, version 2: small changes and references added

Keywords

High Energy Physics - Theory, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 1%
Top 10%
Top 1%
Green
Related to Research communities