
arXiv: 1807.01796
We study the process $pp \to Z(\ell^+ \ell^-)h(b\bar b)$ in the Standard Model Effective Field Theory (SMEFT) at high energies using subjet techniques to reconstruct the Higgs boson. We show that at high energies this process probes four directions in the dimension 6 EFT space, namely the operators that contribute to the four contact interactions, $hZ_��\bar{f}��^��f$, where $f=u_L, u_R,d_L$ and $d_R$. These four directions are, however, already constrained by the $Z$-pole and diboson measurements at LEP. We show that by utilising the energy growth of this process in the SMEFT and the accuracy that can be achieved by using subjet techniques at the High Luminosity LHC, one can obtain bounds on these operators that are an order of magnitude better than existing LEP bounds.
v2: 9 pages, 2 figures and 4 tables; some equations, expressions and numbers corrected; conclusions unchanged; version accepted for publication in PRD
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, High Energy Physics - Experiment
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, High Energy Physics - Experiment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
