
arXiv: 1110.2171
Radiative corrections to the decay rate of charged fermions caused by the presence of a thermal bath of photons are calculated in the limit when temperatures are below the masses of all charged particles involved. The cancellation of finite-temperature infrared divergences in the decay rate is described in detail. Temperature-dependent radiative corrections to a two-body decay of a hypothetical charged fermion and to electroweak decays of a muon are given. We touch upon possible implications of these results for charged particles in the early Universe.
18 pages, 6 figures. v2: typos corrected, bibliography revised, content matches published version
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, 530, Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, 530, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
