<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 10019078
We investigate a new hybrid-model universe containing two types of dark matter, one ``warm'' and the other ``hot.'' The hot component is an ordinary light neutrino with mass \ensuremath{\sim}25${\mathit{h}}^{2}$ eV while the warm component is a sterile neutrino with mass \ensuremath{\sim}700${\mathit{h}}^{2}$ eV. The two types of dark matter arise entirely within the neutrino sector and do not require separate physical origins. We calculate the linear transfer functions for a representtaive sample of warm-plus-hot models. The transfer functions and results from several observational tests of structure formation are compared with those for the cold-plus-hot models that have been studied extensively in the literature. On the basis of these tests we conclude that warm-plus-hot dark matter is essentially indistinguishable from cold-plus-hot dark matter, and therefore provides a viable scenario for large scale structure. We demonstrate that a neutrino mass matrix can be constructed which provides the requisite dark matter constituents, while remaining consistent with all cosmological bounds.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |