
We propose a setup for the origin of dark matter based on spacetime with a warped extra dimension and three branes: the Planck brane, the TeV brane, at a (few) TeV scale ρT, and a dark brane, at a (sub-)GeV scale ρ1≲100 GeV≪ρT. The Standard Model (SM) is localized in the TeV brane, thus solving the Higgs hierarchy problem, while the dark matter χ, a Dirac fermion with mass mχ<ρ1, is localized in the dark brane. The radion, with mass mr<mχ, interacts strongly [∼mχ/ρ1∼O(1)] with dark matter and very weakly (∼mfρ1/ρT2≪1) with the Standard Model matter f. The generic conflict between the bounds on its detection signatures and its proper relic abundance is avoided as dark matter annihilation is p-wave suppressed. The former is determined by its very weak interactions with the SM and the latter by its much stronger annihilation into radions. Therefore, there is a vast range in the dark matter’s parameter space where the correct relic abundance is achieved consistently with the existing bounds. Moreover, for the dark brane with ρ1≲3 GeV, a confinement/deconfinement first order phase transition, where the radion condensates, produces a stochastic gravitational wave background at the nanohertz frequencies, which can be identified with the signal detected by the Pulsar Timing Array (PTA) experiments. In the PTA window, for 0.15≲mχ≲2 GeV the relic abundance is reproduced and all constraints are satisfied. Published by the American Physical Society 2024
High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology
High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
