
We investigate the unhindered gravitational collapse of a homogeneous scalar field with nonzero potential, a two-dimensional analog of the Mexican hat-shaped Higgs field potential. The collapsing scalar field is surrounded by an exterior retarded (outgoing) generalized Vaidya spacetime. We prove that the density dependence on the scale factor cannot be expressed as an algebraic function in such a scenario. For a certain transcendental expression of the density of such field as a function of scale factor, we then show that the collapse evolves to a singularity at an infinite comoving time, which is equivalent to saying that the singularity is avoided altogether. An ultra high density region of the order of Planck length can, however, be reached in a finite comoving time. The absence of the formation of trapped surfaces makes this ultra high density region globally visible.
12 pages, 5 figures
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
