
We show that if dark energy evolves in time, its dynamical component could be dominated by a bath of dark radiation. Within current constraints this radiation could have up to $\sim 10^4$ times more energy density than the cosmic microwave background. We demonstrate particular models in which a rolling scalar field generates different forms of dark radiation such as hidden photons, milli-charged particles and even Standard Model neutrinos. We find the leading effect on the late-time cosmological expansion history depends on a single parameter beyond $��$CDM, namely the temperature of the dark radiation today. Cosmological observations of this modified expansion rate could provide a striking signature of this scenario. The dark radiation itself could even be directly detectable in laboratory experiments, suggesting a broader experimental program into the nature of dark energy.
12 pages, 1 Figure
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Theory (hep-th), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Theory (hep-th), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
