<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We derive constraints on all possible general neutrino-electron interactions (scalar, vector, pseudoscalar, axialvector and tensor) using the recent real time Borexino event rate measurements of $pp$, $pep$ and $^{7}Be$ solar neutrinos. The limits improve several previous ones from TEXONO and CHARM-II for incoming electron and muon neutrinos, and are the first ones for the tau flavor. Future improvements by next-generation solar neutrino experiments are also studied. The limits extend the physics reach of solar neutrino measurements to TeV-scale physics. Finally, the different properties of the new interactions for Dirac and Majorana neutrinos are discussed.
12 pages, 3 figures and 5 tables; published version; comparison with NSI were added; figures slightly modified
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, High Energy Physics - Experiment
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, High Energy Physics - Experiment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |