
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>In ultrarelativistic heavy ion collisions a finite size QCD medium is created. In this paper we compute radiative energy loss to zeroth order in opacity by taking into account finite size effects. Transition radiation occurs on the boundary between the finite size medium and the vacuum, and we show that it lowers the difference between medium and vacuum zeroth order radiative energy loss relative to the infinite size medium case. Further, in all previous computations of light parton radiation to zeroth order in opacity, there was a divergence caused by the fact that the energy loss is infinite in the vacuum and finite in the QCD medium. We show that this infinite discontinuity is naturally regulated by including the transition radiation.
21 page, 22 figures
Nuclear Theory (nucl-th), Nuclear Theory, FOS: Physical sciences
Nuclear Theory (nucl-th), Nuclear Theory, FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.  | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.  | Top 10% | 
