
arXiv: 1609.03515
We model changes of magnetic ordering in Mn-antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a non-collinear spin-polarised density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn$_3$AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn$_3$GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilised by strains larger than 0.75\% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first order transition) and a large adiabatic temperature change (due to the second order transition).
12 pages, 10 figures
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), TK, FOS: Physical sciences, Condensed Matter Physics, Den kondenserade materiens fysik, QC
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), TK, FOS: Physical sciences, Condensed Matter Physics, Den kondenserade materiens fysik, QC
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
