
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Compressed hydrogen passes through a series of layered structures in which the layers can be viewed as distorted graphene sheets. The electronic structures of these layered structures can be understood by studying simple model systems- an ideal single hydrogen graphene sheet and three-dimensional model lattices consisting of such sheets. The energetically stable structures result from structural distortions of model graphene-based systems due to electronic instabilities towards Peierls or other distortions associated with the opening of a band gap. Two factors play crucial roles in the metallization of compressed hydrogen: (i) crossing of conduction and valence bands in hexagonal or graphene-like layers due to topology and (ii) formation of bonding states with $2p_z$ $��$ character.
8 pages, 8 figures
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
