
A practical computational scheme based on time-dependent density functional theory (TDDFT) and ultrasoft pseudopotential (USPP) is developed to study electron dynamics in real time. A modified Crank-Nicolson time-stepping algorithm is adopted, under planewave basis. The scheme is validated by calculating the optical absorption spectra for sodium dimer and benzene molecule. As an application of this USPP-TDDFT formalism, we compute the time evolution of a test electron packet at the Fermi energy of the left metallic lead crossing a benzene-(1,4)-dithiolate junction. A transmission probability of 5-7%, corresponding to a conductance of 4.0-5.6muS, is obtained. These results are consistent with complex band structure estimates, and Green's function calculation results at small bias voltages.
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 73 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
