
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 9975187
A 300-nm-diameter gate is used to introduce an antidot or artificial impurity into a quantum wire defined in an AlxGa1-xAs/GaAs two-dimensional electron gas. At low magnetic fields, geometry-induced quantum interference effects are observed, while at higher fields adiabatic edge-state transport is established. In the transitional regime, conductance resonances due to magnetically bound impurity states exhibit distinct characteristics including beating, sharp period changes, and spin splitting. An asymmetry is observed between the resonances observed as a function of magnetic field and gate voltage. The results are explained by a model based on an interedge-state coupling mechanism. © 1994 The American Physical Society.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
