
arXiv: 2012.05835
Here by combining a symmetry-based analysis with numerical computations we predict a new kind of magnetic ordering - antichiral ferromagnetism. The relationship between chiral and antichiral magnetic order is conceptually similar to the relationship between ferromagnetic and antiferromagnetic order. Without loss of generality, we focus our investigation on crystals with full tetrahedral symmetry where chiral interaction terms - Lifshitz invariants - are forbidden by symmetry. However, we demonstrate that leading chirality-related term leads to nontrivial smooth magnetic textures in the form of helix-like segments of alternating opposite chiralities. The unconventional order manifests itself beyond the ground state by stabilizing excitations such as domains and skyrmions in an antichiral form.
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Condensed Matter Physics, Den kondenserade materiens fysik
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Condensed Matter Physics, Den kondenserade materiens fysik
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
