<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.11824/668
Imposing restrictions on the Feynman paths of the monitored system has in the past been proposed as a universal model-free approach to continuous quantum measurements. Here we revisit this proposition and demonstrate that a Gaussian restriction, resulting in a sequence of many highly inaccurate (weak) von Neumann measurements, is not sufficiently strong to ensure proximity between a readout and the Feynman paths along which the monitored system evolves. Rather, in the continuous limit, the variations of a typical readout become much larger than the separation between the eigenvalues of the measured quantity. Thus, a typical readout is not represented by a nearly constant curve, correlating with one of the eigenvalues of the measured quantity $\hat{A}$, even when decoherence or Zeno effect is achieved for the observed two-level system, and does not point directly to the system's final state. We show that the decoherence in a ``free'' system can be seen as induced by a Gaussian random walk with a drift, eventually directing the system towards one of the eigenstates of $\hat{A}$. A similar mechanism appears to be responsible for the Zeno effect in a driven system, when its Rabi oscillations are quenched by monitoring. Alongside the Gaussian case, which can only be studied numerically, we also consider a fully tractable model with a ``hard wall'' restriction and show the results to be similar.
MINECO, Fondo Europeo de Desarrollo Regional FEDER, Grant No. FIS2015-67161-P (MINECO/FEDER) (D.S.), MINECO Grant No. SVP-2014-068451 (S.R.), MINECO Grant No. MTM2013-46553-C3-1-P (E.A.), SGI/IZOSGIker UPV/EHU, i2BASQUE academic network,
weak von Neumann measurements, continuous limit, Zeno effect, Rabi oscillations, Restrictions on Feynman paths
weak von Neumann measurements, continuous limit, Zeno effect, Rabi oscillations, Restrictions on Feynman paths
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |