
Electron paramagnetic resonance and electron nuclear double resonance (ENDOR) experiments on ZnO nanoparticles reveal the presence of shallow donors related to interstitial Li and Na atoms. The shallow character of the wave function is evidenced by the multitude of 67Zn ENDOR lines and further by the hyperfine interactions with the 7Li and 23Na nuclei that are much smaller than for atomic lithium and sodium. In the case of the Li-doped nanoparticles, an increase of the hyperfine interaction with the 7Li nucleus and with the 1H nuclei in the Zn(OH)(2) capping layer is observed when reducing the size of the nanoparticles. This effect is caused by the confinement of the shallow-donor 1s-type wave function that has a Bohr radius of about 1.5 nm, i.e., comparable to the dimension of the nanoparticles.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 116 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
