
pmid: 28864573
Budding yeast has from the beginning been a major eukaryotic model for the study of metabolic network structure and function. This is attributable to both its genetic and biochemical capacities and its role as a workhorse in food production and biotechnology. New inventions in analytical technologies allow accurate, simultaneous detection and quantification of metabolites, and a series of recent findings have placed the metabolic network at center stage in the physiology of the cell. For example, metabolism might have facilitated the origin of life, and in modern organisms it not only provides nutrients to the cell but also serves as a buffer to changes in the cellular environment, a regulator of cellular processes, and a requirement for cell growth. These findings have triggered a rapid and massive renaissance in this important field. Here, we provide an introduction to analysis of metabolomics in yeast.
Magnetic Resonance Spectroscopy, Metabolome, Metabolomics, Saccharomyces cerevisiae, Mass Spectrometry
Magnetic Resonance Spectroscopy, Metabolome, Metabolomics, Saccharomyces cerevisiae, Mass Spectrometry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
