
pmid: 26933246
The biochemical signaling of cell death pathways is executed at a number of different intracellular and/or membrane-bound high-molecular mass complexes. It is crucial to be able to detect the formation, differences in assembly, and differential composition of such complexes to understand their contribution to the execution phase of apoptotic or necroptotic cell death. We describe here the use of caspase-8 coimmunoprecipitation in the spontaneously transformed keratinocyte cell line, HaCaT, to study the formation and composition of the Ripoptosome, a complex that is based on the serine–threonine kinase receptor-interacting protein 1 (RIPK1). However, the method can be adapted for use with other antibodies and cell lines. This protocol determines whether cells form the Ripoptosome complex, which is important for both apoptosis and necroptosis execution. Caspase-8 is an indispensible Ripoptosome component; therefore, caspase-8 antibodies are used to pull down the respective complex. However, the method cannot discriminate whether this complex triggers apoptosis (through the RIPK1 → FADD → caspase-8 activation pathway), necroptosis (through the RIPK1 → RIPK3 → MLKL activation pathway) or nondeath signaling. The actual signaling output (death or nondeath signaling) depends on the stoichiometry of the respective molecules as well as on the activity of FLIP, caspase-8, or other factors.
Keratinocytes, Caspase 8, Cell Death, Macromolecular Substances, Receptor-Interacting Protein Serine-Threonine Kinases, Humans, Immunoprecipitation, Cell Line
Keratinocytes, Caspase 8, Cell Death, Macromolecular Substances, Receptor-Interacting Protein Serine-Threonine Kinases, Humans, Immunoprecipitation, Cell Line
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
