
AbstractEnormous quantities of biodiversity data are being made available online, but much of this data remains isolated in their own silos. One approach to breaking these silos is to map local, often database-specific identifiers to shared global identifiers. This mapping can then be used to construct a knowledge graph, where entities such as taxa, publications, people, places, specimens, sequences, and institutions are all part of a single, shared knowledge space. Motivated by the 2018 GBIF Ebbe Nielsen Challenge I explore the feasibility of constructing a “biodiversity knowledge graph” for the Australian fauna. These steps involved in constructing the graph are described, and examples its application are discussed. A web interface to the knowledge graph (called “Ozymandias”) is available at https://ozymandias-demo.herokuapp.com.
Knowledge graph, Linked data, QH301-705.5, R, Biodiversity, Identifiers, Biodiversity informatics, Medicine, Challenge, Biology (General)
Knowledge graph, Linked data, QH301-705.5, R, Biodiversity, Identifiers, Biodiversity informatics, Medicine, Challenge, Biology (General)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
