
AbstractBiofidelic numerical models have been developed such as the coil-resolved model to study hemodynamics in the treated aneurysm. In this model, the geometry of the coils is recreated from high-resolution tomography scans of a phantom aneurysm treated with coils. However, this model hasn’t been validated. The purpose of this work is to validate the coil-resolved model. To achieve this, we used the planar-laser induced fluorescence technique on phantom aneurysm treated with coils and measured the residence time and the evolution of rhodamine concentration during the washout. We run passive scalar simulations with the coil-resolved model and measured the evolution of concentration over time. The comparison of the numerical and the experimental results shows that the coil-resolved model reproduces the hemodynamics of the experimental setup. Therefore it can be used as a reference to study hemodynamics in the treated aneurysm or to validate porous media models developed for treatment outcomes prediction.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
