Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbiology
Article
Data sources: UnpayWall
Microbiology
Article . 2006 . Peer-reviewed
Data sources: Crossref
Microbiology
Article . 2006
versions View all 2 versions
addClaim

RNA 3′-tail synthesis in Streptomyces: in vitro and in vivo activities of RNase PH, the SCO3896 gene product and polynucleotide phosphorylase

Authors: Patricia, Bralley; Bertolt, Gust; Samantha, Chang; Keith F, Chater; George H, Jones;

RNA 3′-tail synthesis in Streptomyces: in vitro and in vivo activities of RNase PH, the SCO3896 gene product and polynucleotide phosphorylase

Abstract

As in other bacteria, 3′-tails are added post-transcriptionally to Streptomyces coelicolor RNA. These tails are heteropolymeric, and although there are several candidates, the enzyme responsible for their synthesis has not been definitively identified. This paper reports on three candidates for this role. First, it is confirmed that the product of S. coelicolor gene SCO3896, although it bears significant sequence similarity to Escherichia coli poly(A) polymerase I, is a tRNA nucleotidyltransferase, not a poly(A) polymerase. It is further shown that SCO2904 encodes an RNase PH homologue that possesses the polymerization and phosphorolysis activities expected for enzymes of that family. S. coelicolor RNase PH can add poly(A) tails to a model RNA transcript in vitro. However, disruption of the RNase PH gene has no effect on RNA 3′-tail length or composition in S. coelicolor; thus, RNase PH does not function as the RNA 3′-polyribonucleotide polymerase [poly(A) polymerase] in that organism. These results strongly suggest that the enzyme responsible for RNA 3′-tail synthesis in S. coelicolor and other streptomycetes is polynucleotide phosphorylase (PNPase). Moreover, this study shows that both PNPase and the product of SCO3896 are essential. It is possible that the dual functions of PNPase in the synthesis and degradation of RNA 3′-tails make it indispensable in Streptomyces.

Related Organizations
Keywords

Polyribonucleotide Nucleotidyltransferase, RNA, Bacterial, Bacterial Proteins, RNA, Transfer, Exoribonucleases, RNA Nucleotidyltransferases, Polyadenylation, Streptomyces

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
gold