Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1017/cbo978...
Part of book or chapter of book . 1999 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Controls on the physics and chemistry of seafloor hydrothermal circulation

Authors: Henry Elderfield; Adam Schultz;

Controls on the physics and chemistry of seafloor hydrothermal circulation

Abstract

Low temperature diffuse hydrothermal circulation is a natural consequence of the cooling of the oceanic lithosphere. Diffuse flow is expected to be ubiquitous, and will be present both within mid–ocean ridge crest axial zones of young age (0–1 Ma), and also on the older ridge crest flanks and limbs. If underlying thermal models are correct, hydrothermal circulation should persist for oceanic lithosphere of age 0–65 Ma, and is present over half the total area of the ocean basins. By using numerical models of hydrothermal circulation in cracked permeable media, we show qualitatively how diffuse flow is an intrinsic feature of high temperature axial (–1 Ma) hydrothermal systems, and is not restricted to older (more than 1 Ma) lithosphere. This is in agreement with our field observations which suggest that in such high temperature vent fields the greatest part of the heat and volume flux is due to lower temperature diffuse flow, rather than high temperature black smoker venting. By combining direct measurements of the physical properties of diffusely flowing effluent within axial hydrothermal systems with concurrent sampling of the chemical properties of that effluent, and by considering also the chemistry of unmixed black smoker endmember fluids from the same hydrothermal systems, the processes of mineral deposition and dissolution can be studied directly. By referring to the present–day lithology of such areas, it is possible to examine the balance between concurrent mineral deposition and dissolution processes, and the retention rate of specific mineral assemblages integrated over the history of the hydrothermal system. Thus details of the episodicity of hydrothermal venting within the system may be revealed. An example of this method of combining a variety of direct measurements of diffuse and high temperature effluent properties is given from the TAG hydrothermal field, Mid–Atlantic Ridge. Long time series observations of the physical properties of diffuse and high temperature effluent reveal the importance both of tidal variability and also the response to changes in the permeability structure of the system brought about by natural and anthropogenic processes. Several mechanisms are considered to explain the relationship between ocean tidal loading, solid Earth tidal deformations, and the observed changes in flow within axial hydrothermal systems.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!