Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Competition asymmetry with taxon divergence

Authors: Barnes, David K.A.;

Competition asymmetry with taxon divergence

Abstract

Most organisms experience competition for resources, probably most of the time. As the structure and requirements of closely related species are generally liable to be more similar than in distantly linked species, Darwin suggested that the potential for competition was greater in the former. Since that time, studies have concentrated on interactions of either conspecifics or congeneric species. Shared critical resources, which organisms compete for, are generally mates, food and space (for access to the former). Whilst mates are valued only within species, in that the definition of a species requires it so, both food and space have the potential to be shared by very different organisms. It is now clear that vertebrates may compete with remotely related species: e.g. with squid for krill and with insects for nectar or seeds. Diamond suggested that (i) mutual aggression, (ii) displacement and (iii) evolutionary change in morphology would be increasingly asymmetric with competitor dissimilarity. Thus, with increasing taxonomic distance between two competitors (A and B), increasing aggression is exhibited between them and, increasingly, one consistently displaces the other. Here, Darwin's suggestion and Diamond's first two theories are tested across a taxonomic spectrum for the first time to the best of the author's knowledge. The proportion of spatial competitors in two different marine invertebrate groups demonstrating mutual aggression and displacement increases with taxon divergence (Nei's genetic identity). Congenerics were twice as likely to fight as conspecifics, and confamilial competitors were three times as likely to fight as conspecifics. This relationship seems robust to taxonomic and environmental variability. Competitors do not need to be as distant as birds and bees for complete asymmetry, a different family seems sufficient.

Country
United Kingdom
Related Organizations
Keywords

relatedness, Competitive Behavior, Environment, Biological Evolution, Models, Biological, Bryozoa, interference competition, Aggression, bryozoans, Species Specificity, Animals, Urochordata, Darwin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Average
bronze