Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2019
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2019
Data sources: Apollo
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences
Article . 2019 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: CC BY NC SA
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Auxin transport model for leaf venation

Authors: Jan Haskovec; Peter A. Markowich; Peter A. Markowich; Lisa Maria Kreusser; Henrik Jönsson;

Auxin transport model for leaf venation

Abstract

The plant hormone auxin controls many aspects of the development of plants. One striking dynamical feature is the self-organization of leaf venation patterns which is driven by high levels of auxin within vein cells. The auxin transport is mediated by specialized membrane-localized proteins. Many venation models have been based on polarly localized efflux-mediator proteins of the PIN family. Here, we investigate a modelling framework for auxin transport with a positive feedback between auxin fluxes and transport capacities that are not necessarily polar, i.e. directional across a cell wall. Our approach is derived from a discrete graph-based model for biological transportation networks, where cells are represented by graph nodes and intercellular membranes by edges. The edges are not a priori oriented and the direction of auxin flow is determined by its concentration gradient along the edge. We prove global existence of solutions to the model and the validity of Murray's Law for its steady states. Moreover, we demonstrate with numerical simulations that the model is able connect an auxin source-sink pair with a mid-vein and that it can also produce branching vein patterns. A significant innovative aspect of our approach is that it allows the passage to a formal macroscopic limit which can be extended to include network growth. We perform mathematical analysis of the macroscopic formulation, showing the global existence of weak solutions for an appropriate parameter range.

Keywords

Mathematical modelling, /dk/atira/pure/subjectarea/asjc/2600/2600; name=General Mathematics, Numerical simulation, Dynamical Systems (math.DS), Numerical Analysis (math.NA), Continuum limit, /dk/atira/pure/subjectarea/asjc/3100/3100; name=General Physics and Astronomy, Weak solutions, Mathematics - Analysis of PDEs, numerical simulation, weak solutions, FOS: Mathematics, Mathematics - Numerical Analysis, continuum limit, mathematical modelling, /dk/atira/pure/subjectarea/asjc/2200/2200; name=General Engineering, Mathematics - Dynamical Systems, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
bronze