
pmid: 29434504
pmc: PMC5806014
How many quantum queries are required to determine the coefficients of a degree- d polynomial in n variables? We present and analyse quantum algorithms for this multivariate polynomial interpolation problem over the fields F q , R and C . We show that k C and 2 k C queries suffice to achieve probability 1 for C and R , respectively, where k C = ⌈ ( 1 / ( n + 1 ) ) ( n + d d ) ⌉ except for d =2 and four other special cases. For F q , we show that ⌈( d /( n + d ))( n + d d ) ⌉ queries suffice to achieve probability approaching 1 for large field order q . The classical query complexity of this problem is ( n + d d ) , so our result provides a speed-up by a factor of n +1, ( n +1)/2 and ( n + d )/ d for C , R and F q , respectively. Thus, we find a much larger gap between classical and quantum algorithms than the univariate case, where the speedup is by a factor of 2. For the case of F q , we conjecture that 2 k C queries also suffice to achieve probability approaching 1 for large field order q , although we leave this as an open problem.
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, FOS: Physical sciences, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC), Quantum Physics (quant-ph)
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, FOS: Physical sciences, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC), Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
