Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences
Article . 2015 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Supermassive black holes in the early Universe

Authors: F. Melia; T. M. McClintock;

Supermassive black holes in the early Universe

Abstract

The recent discovery of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.3 has exacerbated the time compression problem implied by the appearance of supermassive black holes only approximately 900 Myr after the big bang, and only approximately 500 Myr beyond the formation of Pop II and III stars. Aside from heralding the onset of cosmic re-ionization, these first and second generation stars could have reasonably produced the approximately 5–20 M⊙seeds that eventually grew intozapproximately 6–7 quasars. But this process would have taken approximately 900 Myr, a timeline that appears to be at odds with the predictions ofΛCDM without an anomalously high accretion rate, or some exotic creation of approximately 105 M⊙seeds. There is no evidence of either of these happening in the local Universe. In this paper, we show that a much simpler, more elegant solution to the supermassive black hole anomaly is instead to view this process using the age–redshift relation predicted by theRh=ctUniverse, an Friedmann–Robertson–Walker (FRW) cosmology with zero active mass. In this context, cosmic re-ionization lasted fromtapproximately 883 Myr to approximately 2 Gyr (6≲z≲15), so approximately 5–20 M⊙black hole seeds formed shortly after re-ionization had begun, would have evolved into approximately 1010 M⊙quasars byzapproximately 6–7 simply via the standard Eddington-limited accretion rate. The consistency of these observations with the age–redshift relationship predicted byRh=ctsupports the existence of dark energy; but not in the form of a cosmological constant.

Related Organizations
Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Astrophysics of Galaxies, General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green
bronze