
arXiv: 1012.5951
We formulate elasticity theory with microrotations using the framework of gauge theories, which has been developed and successfully applied in various areas of gravitation and cosmology. Following this approach, we demonstrate the existence of particle-like solutions. Mathematically, this is due to the fact that our equations of motion are of sine-Gordon type and thus have soliton-type solutions. Similar to Skyrmions and Kinks in classical field theory, we can show explicitly that these solutions have a topological origin.
Condensed Matter - Materials Science, Classical linear elasticity, Applications of local differential geometry to the sciences, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Mathematical Physics (math-ph), Mathematical Physics
Condensed Matter - Materials Science, Classical linear elasticity, Applications of local differential geometry to the sciences, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Mathematical Physics (math-ph), Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
