Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences
Article . 2011 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2011
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Generalized analytic functions in magnetohydrodynamics

Authors: Zabarankin, Michael;

Generalized analytic functions in magnetohydrodynamics

Abstract

An approach of generalized analytic functions to the magnetohydrodynamic (MHD) problem of an electrically conducting viscous incompressible flow past a solid non-magnetic body of revolution is presented. In this problem, the magnetic field and the body’s axis of revolution are aligned with the flow at infinity, and the fluid and body are assumed to have the same magnetic permeability. For the linearized MHD equations with non-zero Hartmann, Reynolds and magnetic Reynolds numbers ( M , Re and Re m , respectively), the fluid velocity, pressure and magnetic fields in the fluid and body are represented by four generalized analytic functions from two classes: r -analytic and H -analytic. The number of the involved functions from each class depends on whether the Cowling number S= M 2 /( Re m Re ) is 1 or is not 1. This corresponds to the well-known peculiarity of the case S=1. The MHD problem is proved to have a unique solution and is reduced to boundary integral equations based on the Cauchy integral formula for generalized analytic functions. The approach is tested in the MHD problem for a sphere and is demonstrated in finding the minimum-drag spheroids subject to a volume constraint for S<1, S=1 and S>1. The analysis shows that as a function of S, the drag of the minimum-drag spheroids has a minimum at S=1, but with respect to the equal-volume sphere, drag reduction is smallest for S=1 and becomes more significant for S≫1.

Related Organizations
Keywords

generalized analytic function, boundary integral equations, Magnetohydrodynamics and electrohydrodynamics, magnetohydrodynamics, drag

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze