Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuroreportarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroreport
Article
Data sources: UnpayWall
Neuroreport
Article . 2000 . Peer-reviewed
Data sources: Crossref
Neuroreport
Article . 2000
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Frontal processing and auditory perception

Authors: Timothy D. Griffiths; Gary G. R. Green; Roy D. Patterson; CA Virginia Penhune; Jenny L. Dean; Isabelle Peretz;

Frontal processing and auditory perception

Abstract

Disordered processing of the pattern in sound over time has been observed in a number of clinical disorders, including developmental dyslexia. This study addresses the brain mechanisms required for the perception of such a pattern. We report the systematic evaluation of temporal perception in a patient with a single intact right auditory cortex and a large right frontal lobe lesion. A striking dissociated deficit was demonstrated in the perception of temporal pattern at the level of tens or hundreds of milliseconds. This proves that, contrary to common belief, mechanisms in the pathway up to and including the primary auditory cortex are not sufficient for the normal perception of temporal pattern. This work suggests a need for frontal processing for the normal perception of auditory pattern.

Country
United Kingdom
Keywords

Adult, Auditory Cortex, Time Factors, Functional Laterality, Frontal Lobe, Audiometry, Brain Injuries, Auditory Perception, Humans, Female, Tomography, X-Ray Computed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze